
KRDB RESEARCH CENTRE

KNOWLEDGE REPRESENTATION
MEETS DATABASES

Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
Tel: +39 04710 16000, fax: +39 04710 16009, http://www.inf.unibz.it/krdb/

KRDB Research Centre Technical Report:

Extended theoretical foundations for QUELO
framework

Nhung Ngo

Affiliation KRDB Research Center, FUB

Corresponding author Ngo Thi Phuong Nhung
maxnhong85@gmail.com

Keywords query building, ontology based data access, relational database
Number KRDB10-2
Date 05-05-2010
URL http://www.inf.unibz.it/krdb/

Abstract

QUELO framework [Catarci, 2004] [Dongilli,2004] has been built by a group led by Profes-
sor Franconi since several years ago and it’s foundations were proposed by Guagliardo Paolo
in his master’s thesis [Paolo,2009]. The aim of this project is to extend Paolo’s works by
considering queries with constants, attributes and queries over relation databases instead of
ABoxes. Regarding to constants and attributes, we will show that these elements will not
affect our reasoning services in ALC. In order to answer queries over relation databases, a
set of mapping rules between relational databases constraints and DL Knowledge bases will
be introduced. We also will prove that the query refinement process in our framework works
normally with these mapping rules.

2

Contents

1 Introduction 4

2 Queries with constants and attributes 4
2.1 Constants . 4
2.2 Attributes . 5

3 Querying over relation databases 7
3.1 Mapping . 7
3.2 Queries and their refinement . 10

4 Conclusion 11

3

1 Introduction

Nowadays, people more and more concern about using ontologies to represent information systems
and there are many techniques supporting querying over ontologies. In general, ontologies are huge
then users don’t know exactly their content. As a consequence, when they want to query some
information, they don’t know how to express it. That’s why a tool to help users building their
queries is necessary.
From this motivation, the first version of a tool named Query Tool was developed under the
SEmantic Webs and AgentS in Integrated Economies (SEWASIE) research project [Catarci, 2004].
With this tool, users can build a query over an ontology from the scratch and refine it. The
refinement process makes sure that the query is consistent with respect to the ontology. The main
features [Paolo,2009] of this tool are following:

• Visual interface : This visual interface allows users manipulate the query

• Focus paradigm: Users can refine a query by select a subquery. All the refine options such as
: getting more general one or more specific one are based on this selected subquery named
focus.

• Refinement by compatible term: A focus can be replaced by only its compatible terms. These
terms are collected by using some Description Logic reasoning such as Pellet or Fact++.

In order to explain the theoretical foundations of the tool above as well as its operations, a formal
Query Tool framework was proposed [Paolo,2009]. In this formal framework, a conjunctive query
and its refinements are defined in an unambiguous way such as :

• A conjunctive query is define as a tree and a focus term is corresponding to a subtree. A
query with a focus term can be transformed to a Description logic concept by a rolling up
procedure.

• All the query refinement operations like: Add compatible, Add relation, Select, Delete,
Weaken and Substitute are written as functional APIs which can support different type of
interfaces.

As we mentioned in the abstract, in the above framework, they did not concern about the constants
and datatypes, which are all supported by expressive description logics. Therefore, in the first part
of this project, we will extend it by consider queries with constants and datatypes. In the second
part, we will consider this framework together with relation databases by giving a mapping between
a relation database and a description logic knowledge base.

2 Queries with constants and attributes

In this section, we will consider queries which contain constants or attributes such as :

• Q(x) = Person(x) ∧Married(x,Mary) ∧ Person(Mary) ∧ ...

• Q(x) = Person(x) ∧ hasName(x, “John”) ∧ String(“John”) ∧ ...

We will show that actually, our system can treat these queries asQ(x) = Person(x)∧∃y.(Married(x, y)∧
Person(y)) ∧ ... or Q(x) = Person(x) ∧ ∃y.hasName(x, y) ∧ .. without changing their answers in
ALC

2.1 Constants

Theorem 1 KB |=FOL > v Q(x, a) iff KB |=FOL > v Q(x, b) for arbitrary a,b where :

• KB is a ALC KB

• Q(x, y) ≡ ∃z.T (x, z) ∧ C(z) ∧ y = z and C is a concept name.

4

Proof:
Since the roles of a and b are similar, we just need to prove 1 direction. Consider KB |=FOL > v
Q(x, a), we have to prove KB |=FOL > v Q(x, b)
Call I is an arbitrary model of KB, by the assumption then ∀x ∈ ∆I , (x, aI) ∈ T I . Assume that I
is not a model of > v Q(x, b), then there is x′ ∈ ∆I such that (x′, bI) /∈ T I

Call I ′ is an interpretation such that ∆I′
= ∆I , .I′

is the same with .I except aI
′

= bI and bI
′

= aI .
Since the KB is in ALC then there is no fact (axioms and assertions) containing a or b. Therefore,
I ′ is also a model of KB.
However, by the definition of I ′ we have : there is a x′ ∈ ∆I′

such that (x′, aI
′
) /∈ T I′

. Then I ′ is
not a model of > v Q(x, a)
⇒ Contradiction
⇒ I is also a model of > v Q(x, b)
Therefore, KB |=FOL > v Q(x, b)

Based on above theorem, it’s clear for us to treat the query Q(x) ≡ ∃z.T (x, z) ∧ C(z) ∧ a = z
(where a is a constant) as a query Q(x) ≡ ∃z.T (x, z) ∧ C(z) because the constant a will not
play any role in the answer of this query. The rewritten query will be process normally in our
framework

2.2 Attributes

In terms of attributes, the analogous theorem will hold.

Theorem 2 KB |=FOL > v Q(x, a) iff KB |=FOL > v Q(x, b) for arbitrary a,b
where

• KB is a ALC KB

• Q(x, y) ≡ ∃z.T (x, z) ∧Dv(z) ∧ y = z and Dv is a datatype

As a consequence, we can rewrite the query Q(x) ≡ ∃z.T (x, z) ∧ Dv(z) ∧ z = a as Q(x) ≡
∃z.T (x, z)∧Dv(z). However, attributes should be consider in the framework in a slightly different
way by mean that they will occur only as leaves of queries. In the other words, we can not add
relations, add attributes or role up at their positions.
Therefore, in the remain part of this section, we will modified some formal definitions, procedures
for functional API and the algorithms to support these changes.

a) Formal definitions

Definition 3 (Query) Let N be a countable set of node names, C a finite set of concept
names, R is a finite set of role names, A is a finite set of attribute names and D is a finite set
of datatypes and N, C, R, A, D be pairwise disjoint. A query Q is a quintuple 〈V,E, o,V, E〉
where :

• (V,E) i a directed tree rooted in o ∈ V , in which V ⊂ N is the set of nodes and E ⊂ V ×V
is the set of (directed) edges.

• V : V → (2C\{∅})∪{{τ}}∪{{d|d ∈ D}} is a total function, called node-labelling function,
which associates each node with a non-empty set of concept name or a datatype.

• E : E → R∪A is a total function, called edge-labelling function, associating each edge with
a role name or an attribute name.

such as :

• For all (v, v′) ∈ E, there is no d ∈ D s.t V(v) = {d}
• For all v ∈ V such that V(v) = {d} and d ∈ D :

5

– There is no v′ such that (v, v′) ∈ E
– There is a v′′ such that (v′′, v) ∈ E and E(v′′, v) ∈ A
– v is called datatype node

Definition 4 (Subquery) Given queries S and Q, we say that S is a subquery of Q, and
write S ⊆ Q iff all of the following condition hold:

• V (S) ⊆ V (Q)

• E(S) ⊆ E(Q)

• ∀n ∈ V (S), VS(n) ⊆ VQ(n)

• ∀e ∈ E(S), ES(e) ⊆ EQ(e)

• If |V (S)| = 1, n ∈ V (S) then there is no d ∈ D s.t VS(n) = {d}

b) Functional APIs

Definition 5 (roll-up) Given a query Q and a node n ∈ V (Q) which is not a datatype
node, the operation roll-up(Q,n) encodes Q into a DL concept in L w.r.t n. The operation
roll-up(Q,n) is defined as encode(Q,n, n) where encode is the recursive procedure described in
Algorithm 1. We use roll-up(Q) as an abbreviation for roll-up(Q, o), where o is the root of Q

Algorithm 1: Calculate encode(Q,n,m)

Input: a query Q and two nodes n,m ∈ V (Q)
Output: a concept C expressing Q in the DL language L
C ← c, for some c ∈ V(n) ;
forall the x ∈ V(n) such that x 6= c do

C ← C u x
end
forall the x ∈ V 1

des,Q(n) such that x 6= m do

if x is not a datatype node then
R← E(〈n, x〉) ;
C ← C uR.encode(Q, x, n) ;

end
else

A← E(〈n, x〉) ;
d← V(x)[0] ;
C ← C u ∃A.d ;

end

end
if n 6= o then

Let p ∈ V 1
anc,Q(n) ;

if p 6= m then
R← E(〈p, n〉) ;
C ← C u ∃R−.encode(Q, p, n) ;

end

end
return C

c) Reasoning Services

Definition 6 (getAttributes) The operation getAttributes takes as input a query Q and
a focus node n ∈ V (Q), n is not a datatype node and returns a set V , V ⊆ A × D. Let
C = roll − up(Q,n) be the context of Q w.r.t n. Then a pair 〈a, d〉 belongs to V if and only if
all of the following conditions are satisfied:

6

• K 6|= ∃a.d v ⊥
• K 6|= ∃a.d v C or K |= C v ∃a.d

d) Operations on Queries

Definition 7 (addAtribute) Let Q be a query and let n ∈ V (Q), n (not a datatype node) be
a focus node. Then, for 〈a, d〉 ∈ getAttribute(Q,n), we define:
addAttribute(Q,n, 〈a, d〉) := Q dR with R is a query such that :

• VR = {n, n′}
• ER = {〈n, n′〉}
• o = n

• VR(n) = VQ(n); VR(n′) = {d}
• ER(〈n, n′〉) = a

3 Querying over relation databases

Instead of using ABoxes, we would like to use a relational database DS to store data and then
answer the query over this database. As a consequence, we need to map the relational database
to a corresponding Description logic KB. We also have to make sure that the query refinement
process can be done in description logic as in our framework while the query answering process
can be performed in database level without any effect in the answers.

3.1 Mapping

Intuitively, the ideas of mapping are : a primary key will be map to a object identification and an
table with n column will be map to n binary relation by mean of reification.
Consider a table T with n column (n ≥ 0) : C,C1, ..., Cn where C is primary key column. T is
corresponding to a concept A and n roles R1, R2, ..., Rn.

a) From DS to Description logic KB
We’ll give the mapping rules and corresponding axioms in KB for following cases

i) There is no Ci such that Ci is foreign key column to a table.

A(x) ≡ ∃y1, .., yn.T (x, y1, ..., yn)

R(x, y) ≡ A(x) ∧ x = y

R1(x, y) ≡ A(x) ∧ ∃y2, .., yn.T (x, y, y2, .., yn)

...

Ri(x, y) ≡ A(x) ∧ ∃y1..yi−1yi+1...yn.T (x, y1, ., yi−1, y, yi+1, .., yn)

...

Rn(x, y) ≡ A(x) ∧ ∃y1...yn−1.T (x, y1, .., yn−1, y)

Then, we have the following axioms in our KB

• ∃Ri.> v A for 0 ≤ i ≤ n
• A v≤1 R

−1
i .> for 0 ≤ i ≤ n

7

ii) There is a Ci such that Ci is foreign key column to a table named Ti
Call Ai is a corresponding concept of Ti

A(x) ≡ ∃y1, ..., yn.T (x, y1, ..., yn)

R(x, y) ≡ A(x) ∧ x = y

R1(x, y) ≡ A(x) ∧ ∃y2, .., yn.T (x, y, y2, .., yn)

...

Ri(x, y) ≡ A(x) ∧ ∃y1..yi−1yi+1...yn.T (x, y1, ., yi−1, y, yi+1, .., yn) ∧Ai(y)

...

Rn(x, y) ≡ A(x) ∧ ∃y1...yn−1.T (x, y1, .., yn−1, y)

Then, we have the following axioms in our KB

• ∃Rj .> v A for 0 ≤ j ≤ n
• A v≤1 R

−1
j .> for 0 ≤ j ≤ n

• A v ∃Ri.Ai

b) From Description Logic KB to DS
Based on above section, we will prove that

i) There is no Ci such that Ci is foreign key column to a table.
T (x, y1, ..., yn) ≡ A(x) ∩R1(x, y1) ∩ ... ∩Rn(x, yn)

ii) There is a Ci such that Ci is foreign key column to a table named Ti
Call Ai is a corresponding concept of Ti
T (x, y1, ..., yn) ≡ A(x) ∩R1(x, y1) ∩ ... ∩Rn(x, yn) ∩Ai(yi)

Proof

i) No foreign key
Based on the mapping rules, we have:

A(x) ∩R1(x, y1) ∩ ... ∩Rn(x, yn) ≡∃y′1, .., y′n.T (x, y′1, ..., y
′
n)

∩ ∃y′2, .., y′n.T (x, y1, y
′
2, .., y

′
n)

∩ ...
∩ ∃y′1...y′n−1.T (x, y′1, .., y

′
n−1, yn)

• ⇒ direction
It’s trivial to see that:

T (x, y1, .., yn)→∃y′1, .., y′n.T (x, y′1, ..., y
′
n)

∩ ∃y′2, .., y′n.T (x, y1, y
′
2, .., y

′
n)

∩ ...
∩ ∃y′1...y′n−1.T (x, y′1, .., y

′
n−1, yn)

Therefore: T (x, y1, .., yn)→ A(x) ∩R1(x, y1) ∩ ... ∩Rn(x, yn)

8

• ⇐ direction
Call I is a model of

P (x, y1, y2, .., yn) =∃y′1, .., y′n.T (x, y′1, ..., y
′
n)

∩ ∃y21, .., yn1.T (x, y1, y21, .., yn1)

∩ ...
∩ ∃y1n...y(n−1)n.T (x, y1n, .., y(n−1)n, yn)

Assume that T (x, y′1, .., y
′
n)I , T (x, y1i, .., yi, y(i+1)i, ..yni)

I are true for all 1 ≤ i ≤ n.
Therefore y′i = yi for all 1 ≤ i ≤ n under I because x is the primary key.
Then we have T (x, y1, .., yn) is true under I
Then P (x, y1, .., yn)→ T (x, y1, .., yn)

ii) Has foreign key
Can be proved analogously.

c) Preserving models
In this section, we will prove that DS and KB have the same FOL models.

Theorem 8 If I is an FOL model of DS then I is an FOL model of corresponding KB

Proof
Let T is an arbitrary table in DS. We have to prove that I is a model of corresponding axioms
related to T
Consider 2 cases:

• No foreign key
For all (xI , yI1 , ..., y

I
n) ∈ T I , based on the mapping rules, we have

– xI ∈ AI

– (xI , yIi) ∈ RI
i for all 1 ≤ i ≤ n

Moreover, according to the mapping rules Ri(x, y)→ A(x), the axioms ∃Ri.> v A is true
under I too.

Besides, assume that (A v≤1 R
−1
i .>) is not true under I for an i. Therefore, with an

xI such that xI ∈ AI there exists at least ya 6= yb ∈ ∆I such that (xI , ya) ∈ RI
i and

(xI , yb) ∈ RI
i (*). Since xI ∈ AI , there exists yI1 , y

I
2 , ..., y

I
n such that (xI , yI1 , ..., y

I
n) ∈ T I .

Because x is a primary key, if (xI , y′I1 , ..., y
′I
n) ∈ T I then y′Ii = yIi . Therefore from (*) and

the corresponding mapping rule of Ri, we have ya = yb → contradiction. So the axiom is
true under I

• Has Foreign key
Can be proved analogously.

Theorem 9 If I is an FOL model of KB then I is an FOL model of corresponding DS

Proof

• No Foreign key
First, assume that xI ∈ AI , xI , yIi ∈ RI

i for all 1 ≤ i ≤ n. We have to prove that
(xI , yI1 , .., y

I
n) ∈ T I

According to the mapping rules :
T (x, y1, .., yn) = A(x) ∩R1(x, y1) ∩ ... ∩Rn(x, yn)
We have (xI , yI1 , .., y

I
n) ∈ T I trivially.

9

Second, assume that xI , yI1 , .., y
I
n) ∈ T I and (xI , y′I1 , .., y

′I
n) ∈ T I where yIi 6= y′Ii for some

i. As a consequence, we have (xI , yIi) ∈ Ri and (xI , y′Ii) ∈ Ri. Since I is a model of KB
then yIi = y′Ii → Contradiction. Therefore the first argument of T is exactly the primary
key of T

• Has Foreign key
Can be proved analogously.

3.2 Queries and their refinement

a) Mapping of a query

Definition 10 Consider a query Q according to the formal definition in Quelo framework. We
will define the map function of Q inductively as follows :

• If Q is an atomic query, A ∈ VQ(o); then map(Q) = ∃y1, .., ynT (o, y1, .., yn) where T is
corresponding table of A according to mapping rules

• If Q is a query which has only 1 node o and VQ(o) = {A1, .., An} then map(Q) = map(Q1)∧
map(Q2)∧ ...∧map(Qn) where Qi is an atomic query with the root node corresponding to
Ai

• If Q is a query which VQ = {o, c1, .., cm} and E(o, ci) = Ri for 0 ≤ i ≤ n then

map(Q) =map(Q1) ∧ ... ∧map(Qm)∧
∃y11, .., yn11T1(o, y11, .., yn11)∧
∃y′11,, y′n11T1(o, y′11, ..., yi11, ..., y

′
n11)∧

...∧
∃y1m, .., ynmmTm(o, y1m, .., ynmm)∧
∃y′1m,, y′nmmTm(o, y′1m, ..., yimm, ..., y

′
nmm)

where Qi is the subquery of Q with the root ci and Ti is the corresponding table of Ri

according to the mapping rules

Theorem 11 The answers of Q and map(Q) are the same.

Proof : by induction on the definition of map(Q)
Actually, map(Q) is just a map of the corresponding conjunctive formula of Q according to the
mapping rules. Therefore, they should have the same answer.

b) Query operations
First, we have: Q is corresponding to the set of subformulas S(Q) = {P1, ..., Pn} where

⋂
Pi

is the corresponding conjunctive query of Q and map(Q) is corresponding to S(map(Q)) =
{map(P1), ...,map(Pn)}

i) Adding information (addRelation, addCompatibles)
Assume that we want to add another constraint to Q by a compatibles term or a relation,
then we have S(Q′) = S(Q) ∪ {Pn+1} where Pn+1 is a concept expression A(x) or role
expression R(x, y). map(Pn+1) is the map of Pn+1 according to the mapping rules. Then
S(map(Q′)) = S(map(Q)) ∪ {map(Pn+1)}

ii) Removing information (delete, weakening)
Assume that we want to remove information Pi in S(Q) then S(Q′) = S(Q)\{Pi}. map(Pi)
is the map of Pi according to the mapping rules. Then S(map(Q′)) = S(map(Q)\{map(Pi)})

10

4 Conclusion

To sum up, in this research we dealt with 2 goals :

• Extended Quelo framework with constants and attributes

• Defined the mapping rules between relational databases and description logic knowledge base
which do not effect the query refinement process in Quelo.

In general, the first result help us consider more complicated queries in term of query building while
the second result will support us answer these queries easily by using normal relational database
techniques.

References

[Catarci, 2004] T. Catarci, T. D. Mascio, P. Dongilli, E. Franconi, G. Santucci, and S. Tes- saris,
AOBQ: An ontology based visual tool for query formulation support, In Proceedings of the 16th
Biennial European Conference on Artificial Inteligence (ECAI 2004), Valencia, Spain, 2004

[Paolo,2009] Guagliardo Paolo : FSQ: Theoretical Foundations of an Ontology-Based Visual Tool
for Query Formulation Support, EMCL Master thesis, Free University of Bolzano, Italy, 2009

[Dongilli,2004] P. Dongilli, E. Franconi, and S. Tessaris : SEWA: Semantics driven support for
query formulation, In Proceedings of the 2004 International Workshop on Description Logics,
Whistler, BC, Canada, 2004

11

